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In most focused laser irradiations of slabs there are several significant two- and 
three-dimensional effects in the resultant material motion. By using a “natural” coor- 
dinate system it is possible to account for the most significant features of these effects 
in a one-dimensional calculation. The essential requirement is to find a coordinate 
system wherein the contours of constant density, temperature, etc., coincide 
approximately with the coordinate lines. For one such coordinate system, an “ellip- 
soidal” coordinate system, we obtain the fluid equations and discuss the approximations 
that are necessary to obtain one-dimensional equations. 

1. INTRODUCTION 

In many instances plasmas have been created in the laboratory by focusing 
intense laser pulses on a solid surface. In the immediate vicinity of the center of the 
focal spot the consequent plasma motion is planar. For this reason, one-dimension- 
al planar geometry has often been used to study the plasma motion, However, as 
soon as the plasma expands outward to distances on the order of the focal spot 
size, there begins to be a significant amount of lateral expansion and the assumption 
of planarity breaks down. Indeed, for distances large compared to the focal spot 
size, the expansion becomes approximately spherical. 

Clearly, we are faced with solving a problem which is intrinsically two dimen- 
sional. However, two dimensional calculations present several problems. Resolution 
in two dimensions comparable to what can readily be obtained in one dimension 
requires large amounts of computer time and storage space. By suitabIy tailoring 
the coordinate system, significant reductions of these requirements appear possible 
without appreciable sacrifice in accuracy. A trivial example of this is a problem 
which has spherical symmetry. Using a spherical coordinate system, the variation 
is only in the radial direction, resulting in a one-dimensional problem. 
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The essential feature of spherically symmetric problems which permits a one- 
dimensional treatment is that there is no variation in the 8 or v directions. In 
cases of approximate spherical symmetry, the angular dependence can be neglected 
as a first approximation. Thus, the key to “one-dimensionalizing” a problem is the 
use of a coordinate system wherein the variation with respect to two of the three 
coordinates is negligible. 

A typical problem is sketched in Fig. 1. It consists of a laser beam focused on the 

FIG. 1. Sketch of a typical laser irradiation of a solid surface. 

surface of a slab with a focal spot radius r,, (Fig. la). As a result, a shock wave or 
a thermal conduction wave propagates into the slab and surface material blows off 
into the vacuum (Fig. I b). A one-dimensional planar calculation effectively restricts 
the direction of flow to be normal to the slab surface, whereas there is in fact 
considerable lateral flow. The contours of contant temperature and pressure are 
nearly elliptic; the lines of mass and energy flow (streamlines) are nearly orthogonal 
to the contours and are approximately hyperbolic. A coordinate system which has 
similar features is, in three dimensions, the oblate ellipsoidal coordinate system. 
[I, 21 The coordinate grid in a plane containing the symmetry axis is shown in 
Fig. 2. The grid consists of confocal ellipses and confocal hyperbolas. If we use a 
coordinate system such as this one, then as a first approximation we should be 
able to neglect the variation of temperature, pressure, etc., along the ellipses. 
As a result, the problem becomes one-dimensional since the various quantities of 
interest are functions of only one coordinate. 

At this stage in the development of ellipsoidal hydrodynamics, we recognize 
that one-dimensional ellipsoidal calculations should not be regarded as a complete 
substitute for full two-dimensional calculations, but rather as a complementary 
technique. For example, in parameter studies, many one-dimensional ellipsoidal 
calculations can be made, using relatively little computer time, followed by a few 
two dimensional calculations for cases of particular interest. 

The equations relating the ellipsoidal coordinates to the cylindrical coordinates r 
and z are obtained in Section 2. The one-dimensionalized hydrodynamic equations 
are then obtained in Section 3. In Section 4 we discuss briefly how our treatment 
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FIG. 2. Ellipsoidal coordinate system (in r - z plane). The grid consists qf confocal ellipses 
and confocal hyperbolas. 

relates to other treatments of two-dimensional effects. Section 5 describes a sample 
laser problem, comparing the results obtained with Cartesian coordinates and 
with ellipsoidal coordinates. In Appendix A we obtain the hydrodynamic equations 
in orthogonal curvilinear coordinates and then specialize the results to ellipsoidal 
coordinates. In Appendix B the difference equations used for the sample calculations 
are given. 

2. ELLIPSOIDAL COORDINATES 

The laser irradiations with which we are concerned here are generally assumed 
to be symmetric about the axis of the laser beam, which we also assume to be 
perpendicular to the solid surface. Thus, we define this axis to be the z axis of 
cylindrical coordinates so that all the quantities of interest are independent of 4, 
the angle around this axis. The z = 0 plane is defined as the initial surface of the 
solid. Ellipsoidal coordinates have been used in several areas of physics for some 
time (see [ 1,2] for example). We use the same geometry, of course, but a somewhat 
different form of the coordinate variables. In this section we briefly review the 
essential points of the ellipsoidal coordinate system. The equation [3] 

ps;84p +f= 1 
0 
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describes an ellipse, which has axes coincident with the r and z axes, has a focus 
on the r axis at r = q,, , and intersects the z axis at z = p. Similarly, the equation 

r2 22 
-2 - qo2 _ q2 = 1 
4 

(2) 

describes a hyperbola which has a focus on the r axis at r = q0 and intersects 
the r axis at r = q. The family of ellipses obtained by varying p (and holding q,, 
fixed) is everywhere orthogonal to the family of hyperbolas obtained by varying 
q(0 < q < q,,). Consequently, we may take p and q as the coordinates of our 
ellipsoidal coordinates. Oblate ellipsoids are obtained by rotating the ellipses 
around the z axis, which is now also the p axis. 

From Eqs. (1) and (2) we may obtain r and z as functions ofp and q: 

r = 4U + p2/qo2Y/2, (3) 

z = p(l - q2/q$)1/2. (4) 

From Eq. (4) it can be seen that we take p to have the same sign as z. As a conse- 
quence, moving across the r axis for r > q0 produces a discontinuous change in p. 
However, this will not cause us any particular problem. Near the origin, the 
coordinate system is essentially planar, with q M r and p w z, while at large 
distances from the origin (1 p I> q0 > q) it becomes essentially spherical with 
pa w r2 + z2. The ellipsoidal coordinate system was originally arrived at by looking 
for a coordinate system whose grid coincided approximately with the contours of 
constant temperature, etc. It should be emphasized, however, that the coordinate 
system itself is stationary; it does not move with the material. 

3. ELLIPXIIDAL HYDRODYNAMICS 

The basic idea of using ellipsoidal coordinates is, of course, applicable to 
many types of analytic or machine calculations concerning laser irradiated slabs. 
In this paper, we will be concerned only with fluid problems. The equations with 
which we wilI be concerned are given by 

@p/W + v - cp9 = 0, (5) 

p(a@t) + p(v * V)v + VP = 0 (6) 

WW(e + 4~3 + v * W + Qu2) + (l/p)V - (W = Q, (7) 

where p is the density, v is the velocity, P is the pressure, e is the internal (thermal) 
energy per unit mass, and Q is a sum of “source” terms (power per unit mass). 
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The principal source terms of interest here are the heat conduction and laser 
deposition terms, 

P!& = V . W’T), (8) 

p& = -v * a, (9) 

where K is the thermal conductivity, T is the temperature, and 4 is the laser 
energy flux vector. 

In Appendix A, Eqs. (5)-(g) are transformed into ellipsoidal coordinates. In 
accordance with our approximation we assume that P, T, ~3, etc., are independent 
of q, and Q = 0. By ~5 we mean u”(t)/& where p(r) is the coordinate of a point 
moving with the fluid. We will also assume that @a = 0 so that the laser light 
propagates along the hyperbolas. Except for q m q,, this is a reasonable description 
of the focal region. In effect we are assuming that the dominant energy and mass 
flows are in the p direction, along the hyperbolas of constant q, and we are ignoring 
the flows in the q direction. The equations then become 

2 + P g p2 + q;2 _ q2; MP2 + 42 - 4% = 09 

p 3 + pj $$ + (p” “; -$q< qa)1’2 $ = 0, (11) 

a 
z ( e + !j vg2) + P $- (e + i vD2) 

+ 
1 

J?- W( P2 + qo2 - 431 = $2, 
P(P2 + qo2 - 43 aP 

PQC = l 
Pa -I- qo2 - q2 ap a [~P”+qo%g]s (13) 

PBL = - p2 + d2 _ q2 g KP2 + q02)1’2(P2 + qo2 - q2Y2 @,I, (14) 

where Jo = dp/dt = v,(p2 + q02)1/2/(p2 + qo2 - q2)l12. 
Unlike the case of spherical coordinates, Eqs. (lo)-(14) are still q-dependent, 

even though we have assumed P, T, etc., to be independent of q. This is due to the 
fact that the “ellipsoidal symmetry” is only approximate. In other words, if we 
were to take as initial conditions, temperatures, pressures, etc., that were indepen- 
dent of q, then the solutions of the full two-(or three-)dimensional equations 
would not remain independent of q for later times. However, the q dependence is 
only significant in the region q M q,, and I p ) < q,, . In this region we expect our 
approximation to be poor anyway since this is initially part of the vacuum-solid 
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interface outside of the focal region, and flow across this interface is being ignored. 
Consequently, we will concentrate on the regions for which q2 < q,,2, that is, in 
the vicinity of the z axis. As a result, Eqs. (lOj(14) simplify somewhat: 

g+ v, $j + 5 $- (Rv,) = 0, 

p $$ + pv, av, + ap = 0, 
aP aP 

-&(e+;v,‘) ;( + v, - e + ; VP2 )+-&&W,=~, (17) 

!& = -&f (R+), (18) 

a= - $ $ WJ, 

with 

where, now, v, = $. 
R = p2 -I- qo2, (20) 

Equations (15j(19) are very similar to the one-dimensional equations that 
occur in planar, cylindrical, and spherical symmetry. The only difference is that 
the factor R = (p2 + q,,3 replaces P-l, where 6 = 1, 2, or 3, respectively for the 
three symmetries. Indeed, Eqs. (15j(19) become equivalent to the spherical ones 
for pa > q,,2. Since R always occurs in the combination R-la(R -a*)/ap, multiplica- 
tion of R by a constant leaves the equations unchanged and (p2 + q,,? can be 
replaced by (1 + p2/qo2). Then, for p2 < go2 Eqs. (15)-(19) become equivalent to 
the corresponding one-dimensional planar equations. 

In the process of obtaining Eqs. (15 j(19), our original approximation has been 
altered slightly. In effect, we are now assuming that the contours of constant 
temperature, etc., are elliptical in the vicinity of the z axis and that, consequently, 
Eqs. (15 j(19) describe the plasma behavior in this region. Since we are now trying 
to match the solution mainly along this axis, we have a certain amount of freedom 
to vary q,, to obtain the best match to the correct two-dimensional solution. On 
physical grounds, however, we would expect q,, to be approximately equal to r, , 
the radius of the focal spot. The full elliptical coordinates are used primarily to 
extrapolate the solution from the z axis to the remainder of the material for the 
purposes of calculating neutron production, etc. 

Equations (15 j(19) can be readily changed to Lagrangian form with the 
substitution 

dldt = a/at + vQaIap. (20 
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Equation (15) then becomes 

$+f$(Rvd = 0. (22) 

If we define m(p) by 

4~) = j” R(P’) P(P’) 4-f, --m (23) 

then, using Eq. (15), it can easily be verified that 

dm am am -- 
dt- dt + v, - = 0. 

ap (24) 

The quantity m(p) is proportional to the mass to the left of the surfacep = constant 
and inside the surface q = constant < q,, . Equation (24) is then just the con- 
servation of mass: for a point p(t) moving with the fluid, m is a constant. 

Consequently, m can be used as a Lagrangian coordinate through the substitution 

a am a -z--z 
aP ap am 

R&!- 
am ' 

Utilizing Eqs. (21) and (25) the remaining equations, (16)-(19), become 

$f’+Rg=O, 

d 
x ( e -I- i vp2) + & (Rv,P) = s, 

where 

The simplest equation for the propagation of the incoming laser energy is 

V** = -K 1 * I, 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
where K is the absorption coefficient. By assumption Qi, is the only nonzero 
component. Utilizing Eq. (30) the propagation equation may be written 

a*+ _ - - --K I#+ 1~ ap 
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where now $+ denotes the incoming laser energy. Note that #+ is negative if the 
laser is incident from the +p direction. If the density exceeds the critical density 
at some point, the energy is either reflected or “anomalously absorbed” at this 
point. In the case of reflection, the reflected energy is given by #- = -$+ at the 
critical density. The reflected energy propagates back out of the plasma according 
to the equation 

a+- 
-= -KI $01. 

aP (33) 

For the purposes of Eq. (29), the total flux is given by # = #+ + $- . 

4. DISCUSSION 

In the preceding section, one-dimensional equations were obtained using an 
ellipsoidal coordinate system. Similar results can be obtained on a simpler pheno- 
menological basis: We note that for all of the one-dimensional models, the relevant 
equations are the same except for the factor R which is determined (aside from 
a multiplicative constant) by the coordinate system. In the laser-plasma problem 
the geometry in the vicinity of the target surface (p = 0) should be essentially 
planar so that R M 1 for small p. For distances far from the surface the plasma 
motion should be similar to that produced by a point source, i.e., spherical. 
Thus, R w p2 (or p2/qo2) for large 1 p (. A form of R that satisfies these requirements 
is 

R = [l + (plqo0)2n31’n. (34) 

The value of n determines the sharpness of the transition from planar to spherical 
geometry. We have chosen n = 1, which results in a smooth transition. 

In a related model, Floux [4] joins together a conical section and a cylindrical 
section, inside of which the geometries are spherical and planar, respectively. 
In effect, he has taken IZ = co in Eq. (34) so that R = 1 forp < q,, and R = (p/q,J2 
for p > q. . A comparison of the geometries for n = 1 and n = co is shown in 
Fig. 3. As can readily be seen, the two models differ mainly in the vicinity of 
P = 40. 

At this time, the best method we have of checking the results of one-dimensional 
ellipsoidal calculations is to compare them with the results of full two-dimensional 
calculations. Such comparisons are being made, and the results so far are very 
encouraging. Comparisons for several typical laser-plasma problems will be 
published in a forthcoming paper. 

In the foregoing section the application of ellipsoidal coordinates to one- 
dimensional calculations has been discussed. It should be pointed out that an 
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ellipsoidal coordinate system can be used to advantage in two-dimensional calcula- 
tions as well, especially in Eulerian codes. The essential feature of the ellipsoidal 
coordinates is that in a laser-plasma problem the density, temperature, etc., 
should be fairly constant along the ellipses. Consequently, relatively few zones 
should be needed in the q direction. Indeed, a one-dimensional calculation may be 
regarded as a limiting case where only one zone in the q direction is used. The 

FIG. 3. Comparison of geometries used by Floux [2] (upper) and in this paper (lower). 

hydrodynamic equations for the more general two-dimensional case are given in 
Appendix A. Using the two-dimensional equations, each of the functions may be 
expanded as a power series in q, for example p = p,, + plq + p2q2 + es-, where 
p0 , p1 , etc. are functions of p and t. From symmetry considerations, all of the 
scalar functions (p, T, etc.) and thep-components of vectors must be even functions 
of q, while the q components of vectors must be odd functions. This means, for 
example, that ply p3, p6, etc. are all zero. By retaining only the zero order terms, 
Eqs. (15)-(19) are obtained. In some cases it may be necessary to include some 
higher order terms. At this time no general criterion is available for determining 
how small the higher order terms are. The best check on the accuracy of the one- 
dimensional calculation is a comparison with a two dimensional calculation. One 
such comparison should suffice for each general category of problems. 
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5. EXAMPLE 

To show the difference between one-dimensional calculations using planar 
geometry and those using ellipsoidal geometry, we present the results of a sample 
laser problem in this section. The problem consists of irradiating a deuterium slab 
with initial density of 0.21 gm/cm3 by a laser pulse with a total fluence of 3.2 x 104 
J/mm2 in a triangular pulse with a base 0.3 nsec long. This corresponds to 250 J 
in a 100 pm diameter circle. WOLIP, a one-dimensional, Lagrangian laser-plasma 
code was used for the calculation. The difference equations used in WOLIP are 
given in Appendix B. In addition to Eqs. (26)-(33), WOLIP has separate electron 
and ion temperatures, heat exchange between the electrons and ions, and brems- 
strahlung loss from the electrons. An ideal-gas equation of state is used in these 
examples. WOLIP also calculates the neutrons produced from fusion, however, the 
energy produced by fusion is ignored. In these calculations anomalous absorption 
as well as inverse bremsstrahlung absorption is used: any laser energy reaching the 
critical density is absorbed at that point. This is done to ensure that the same 
amount of energy is absorbed in each calculation. The temperatures and densities 
at 0.3 nsec, the end of the laser pulse, are shown in Figs. 4 and 5. The laser is 
incident from the right; the surface of the solid deuterium was initially at x = 0.0. 
Two sets of curves are shown, one for planar geometry, the other for ellipsoidal 
geometry with q,, = 50pm. Initially the problem is dominated by electron thermal 
conduction. As can be seen in Fig. 4, a thermal conduction wave has propagated 

0.0 
POSITION (mm) 

FIG. 4. Temperatures at the end of a 3.2 x lo4 J/mmz, 0.3 nsec laser pulse incident from the 
right on solid deuterium. Curves 1 and 2 are electron temperature, 3 and 4, ion temperature. 
Curves 1 and 3 are the result of a calculation using planar geometry, 2 and 4, ellipsoidal geometry 
with q. = 5Opm. 
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FIG. 5. Densities for the same cases as Fig. 4. Curve 1 is for planar geometry, 2 is for ellip- 
soidal geometry. 

into the solid. Due to lateral energy flow (thermal conduction) in the ellipsoidal 
case, the temperatures are lower and the thermal conduction wave is moving 
more slowly. As a result, a shock wave has become fairly well formed, resulting 
in the large density peak seen in Fig. 5. In the planar case, the thermal conduction 
wave is just beginning to slow down enough for a shock wave to start forming 
(the bump in density at -0.35 mm). As the deuterium expands into the vacuum, 
the density and ion temperature drop off more rapidly in the ellipsoidal case due 
to lateral expansion. As a result of the lower temperatures, about l/30 as many 
neutrons are produced in the ellipsoidal case. 

APPENDIX A: HYDRODYNAMICS IN ORTHOGONAL CURVILINEAR COORDINATES 

1. General 

The hydrodynamic equations with which we are concerned may be written in 
the form: 

g + v - (pv) = 0, (Al) 

p $ + p(v * V) v + VP = 0, W) 

(A3) 
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p& = V - (KVT), 644) 

p& = -v * 9. WV 

These equations are identical to Eq. (5)-(9). Anderson, Preiser, and Rubin [5] 
discuss a conservative form of these equations with Q = 0 for general curvilinear 
coordinate systems. The foregoing equations are used here because they can be 
readily changed to Lagrangian form. A conservative form of the equations can 
be obtained using the results of this paper and Ref. [5]. The differential operators 
in orthogonal curvilinear coordinates are given by [6-lo] 

646) 

(A@ 

where ui is the unit vector along the xi coordinate line and hi is a metric coefficient. 
The length ds of an infinitesimal line segment is given by 

ds2 = C h: dxi2. 649) 

The unsubscripted h is the product of all the hi, 

h = hlh2hs . 

Utilizing Eqs. (A6)-(A8) the hydrodynamic equations become 
(AW 

(All) 

or 

$(ei-foe) -t~$$e+fu2) +iT$$-(T) =Q, (A14) 
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(A15) 

(Am 

The corresponding set of equations in Lagrangian form can be readily obtained 
by using the relation 

6417) 

in Eqs. (A12)-(A14). 

2. Ellipsoidal Coordinates 

The relations between the ellipsoidal coordinates p and q and the cylindrical 
coordinates r and z are, as given by Eqs. (3) and (4), 

z = ; (402 - qy, w3) 

r = -$ (p” + q02)l12. (Al9 

The third coordinate in each case is 4, the angle around the z axis. The metric 
coefficients in the two different coordinate systems are related by 

In cylindrical coordinates h, = h, = 1 and h, = r. Using Eqs. (A18)+20) the 
metric coefficients in ellipsoidal coordinates are 

(A20 

(A221 

(A23) 

(A24) 

h, = [(S)” + (g)2]1’2 = y/a, 

h, = [(g,” + ($)2]1’2= y/P, 

h =I=? m % , 

h = h,h,h, = %sf 
408 ’ 
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a = (P” + qo2y2, (A25) 

B = (%I2 - q2P2, 6-9 

y = (p” + qo2 - qy. 6427) 

Since we are concerned here with axially symmetric problems, we will omit all 
of the derivatives with respect to 4 and assume V+ = 0. As a consequence, the 
hydrodynamic equations (Al I), (A13)-(A16) become 

P a 
+-+$bYPv,)+-- pqy2 a4 GlYP%~ = 89 

WW 

G431) 

, 6432) 

6433) 

Finally we might remark that we could replace the coordinate q by the angular 
coordinate 0 which is defined by 

sin 0 = q/q0 . (A341 

The resulting set of coordinates are related to the cylindrical coordinates r, z by 
the relations 

z = p cos 0, (A351 

r = (p” + qo2)l12 sin 0. (A361 

If we now allow the range of 0 to exceed 42, the coordinates p and 0 are continuous 
everywhere, removing the discontinuity at q = q,, referred to in Section 2. The 
hydrodynamic equations can be obtained through the same process as was used 
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to obtain Eqs. (A28)--(A33), or more simply by using Eq. (A34) and the relation 

/I$=$. (-437) 

As can be seen from Eqs. (A35) and (A36) spherical coordinates can then be 
obtained as a special case by setting q. = 0. 

APPENDIX B: WOLIP EQUATIONS 

WOLIP is a one-dimensional Lagrangian hydrocode written primarily for the 
study of laser induced plasmas. It has separate ion and electron temperatures, 
heat exchange between ions and electrons, ion and electron thermal conductivity, 
bremsstrahlung loss from the electrons, and inverse bremstrahlung laser absorp- 
tion. WOLIP has a provision for using anomalous laser absorption wherein a 
specified fraction of the laser energy that reaches the critical density is absorbed 
at that point; the remainder is reflected back out through the plasma. In addition, 
WOLIP calculates the neutrons produced in fusion reactions. For the calculations 
of interest here, the amount of fusion energy produced was negligible and was 
consequently ignored in the energy balance equation. The equations used by 
WOLIP are similar to those used in other laser-plasma codes [I 11; we include them 
here for completeness. 

In this section, we will denote the spatial variable in all geometries by r. The 
“radial factor” R is then R = 1 for planar geometry, R = 2vr for cylindrical 
geometry, 4nr2 for spherical geometry, and 2rr(r2 + qo2) for ellipsoidal geometry. 
The factors 27r and 47~ are used so that, for example, in spherical geometry # is the 
total laser power rather than the power per steradian, 

In a Lagranigan code mass is automatically conserved by assigning a fixed amount 
of mass to each zone, denoted by Amj+a. We denote quantities at the zone boundries 
with the subscript j and quantities at the zone centers with the subscript j + 4. 
Similarly, quantities at time tn have the superscript n, quantities at intermediate 
times have the superscript n + 4. We denote spatial differences with a A and tem- 
poral differences with a 6, thus, 

Aajn E a;+* - a:+ , W 

6ajn E a;+* - a;-*. WI 

Although n andj are usually taken to be integers, Eqs. (Bl) and (B2) hold for both 
integral and half-integral 12 and j. In addition to Am, the principal variables in 
WOLIP are tn, rj*, V;l+* , Vn j++ 2 TL-+ ) and T,lj++ . The last three variables are the 

SSI/d3-7 
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specific volume (V = I/p) and the ion and electron temperatures, respectively. 
The pressures Pi and P, , and the internal energies ei and e, are determined by the 
equations of state, which for the examples considered in this paper are fully 
ionized, ideal gas equations of state 

Pi = &T,/A V, P3) 
P, = Z&T,/A V 034) 
ei = # R,TJA, 035) 

e, = 8 Z&TeIA, 036) 

where R,, is the gas constant, and A and Z are the atomic weight and atomic 
numbers, respectively. When full ionization is not appropriate, Z is replaced byZ, 
the average charge state. Similarly, for compounds or other mixtures of nuclei, 
A is replaced by A. 

The momentum equation (equation of motion) is 

dv 
-is= --R & (f’ + qv), 037) 

where qv is the VonNeuman artifical viscosity 1121 and P = Pi + P, . The 
difference form of this equation used in WOLIP to obtain vq+* is 

with 

2kin = -Rjn(dPj” + Aqtj*) W/Am,, 038) 

&” = g@jp+t + &n-i), (W 

Amj = i(Amj+f + Am+& @lOI 

The form of the artificial viscosity used in WOLIP is 

qtj& = 2(Av;;9/FQ , t (Bll) 

where 
vjy-f = +(v,“,, + Pg. 0312) 

However, if either Avy;f or SV;!- is positive (expansion) qv is set equal to zero. 
Using the results of Eq. (B8), rj is advanced to tn+l 

&.“+f = yn+t &n+t. 
j 5 W3) 



ELLIPSOIDAL COORDINATES 385 

The new specific volume is then obtained with 

v?+f = Llu;$pnj++ . 
o++ 

The factor d U is obtained from the analytic evaluation of the integral 

W4) 

Uj = fi Rdr. W5) 

For example, for ellipsoidal geometry 

Uj = 27?rj(qo2 + rj”/3), 

and d U is obtained using Eq. (Bl). 

VW 

The energy conservation equation used in WOLIP is not Eq. (27) but may be 
obtained from it by using Eqs. (22), (25), (26), and the thermodynamic relations 

de dT ae [ 1 dV i3e -- 
zt=-z aT “+ 

-- 
[ I dt 8V r’ 

[%I,= T[$,-P. 

@I71 

@W 

The equation used in WOLIP is 

where C = [i3e/aTJv, the specific heat at constant volume, PT = [aP/aflp, and 
Y = dV/dt. The first two of these derivatives are determined from the equations 
of state. For the case of an ideal gas used here, they take the forms 

PTi = R,,/VA 0320) 

PTe = ZR,/VA, 0321) 

Ci = Q&/A 0322) 

C, = %ZR,/A. cB23) 

Since WOLIP has separate ion and electron temperatures, Eq. (B19) is used 
twice, once for the ions and once for the electrons, 

dTi . . 
cix+ p~,Tiv = Pi, w4) 

0325) 
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These two equations may be combined into a single matrix equation having the 
same form as Eq. (B19) except that T and B are two-element column matrices 

T=[;], @W 

Q = [gJ (~27) 

and C and PT are square diagonal matrices 

The source terms are given by 

The conductivity terms Qci and &, are given in matrix form by 

where K is a square diagonal matrix 

@28) 

@W 

0332) 

0333) 

The heat exchange and radiation loss terms OX and OR are given by 

8x = 2~.d7’, - Ti), @34) 

QR= 2wRT,. 0335) 

These are combined into one matrix term, 2QT, by defining the square matrix 

(B36) 

The term -q,,v in Eq. (B30) accounts for the shock heating due to ion viscosity. 
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The laser absorption term 0‘ is given by Eqs. (29)-(33). The entire source term is 
then written as 

(2 = &+2QT+-S, (B37) 
where 

s = [-(g. (B3g) 

Equations (B19) and (B37) lead to the difference equation used in WOLIP to 
obtain T?+’ 3fb 

C;;) 8Tj”,+,t/8tn+t = -P;$Tjn++ff~+;~ 

where 

T;!; = S<T,“,+tl + Tj”,,), @40) 

v$+ = W&+~/ljtn+*, (B41) 

Ar;+t = &(Ar;$+l + Arl”,* + Ar;z$ + Al;:,), (~42) 

and R;+* is evaluated at rr+* = $(rT+’ + r.p). The coefficients Kt , K, , wR, ax, 
and K are obtained from Spitzer [13]. They are functions of T;+* and Tr’* which 
are obtained by linear extrapolation of Tin-l, Tin, Tf-‘, and Ten. Equation (B39) 
is an implicit equation since the right hand side contains Tz’, TJ!!, and TJ!$. 
It is solved by the usual method for tridiagonal systems, modified to take account 
of the fact that the elements of the tridiagonal matrix are themselves 2 x 2 
matrices [ll]. 
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